Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 313: 137565, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36528156

RESUMO

The human population is regularly exposed to bisphenols. The first compound of this class, bisphenol A, is burdened by numerous reports of its potential toxicity and has been hence replaced by its analogues, so-called next generation bisphenols. Their widespread use has made them pervasive throughout the environment. These endocrine disrupting chemicals can affect the cardiovascular system, and hence the aim of this study was to test 14 bisphenols (A, AF, AP, B, BP, C, E, F, G, M, P, PH, S and Z), and compare their effects in vitro (human and rat cell lines), ex vivo (isolated rat aorta) and in vivo (Wistar Han rats, acutely or chronically exposed to low environmental and high toxic doses). The majority of the tested bisphenols relaxed rat aorta, but their potency varied markedly. The most potent compound, bisphenol AF, had an EC50 of 57 µM. The mechanism of action was likely based on the inhibition of calcium influx via L-type calcium channels. The cytotoxicity of bisphenols towards 4 human and rat cell lines (H9c2, A-10, MCF7/S0.5 and MCF7/182R-6) showed variable potencies ranging from units of micromolar to millimolar concentrations. Based on these data, an effect on arterial blood pressure and possible cardiotoxicity was expected. Contrarily, the in vivo acute effects of three doses (0.005, 0.05 and 2.5 mg/kg) of bisphenol AF and 3 other analogues (A, S and F) on the cardiovascular system were rather biologically negligible. The most potent bisphenol, AF, was also administered chronically at a dose of 2.5 mg/kg for 4 weeks to rats, but had no impact on arterial blood pressure. Our results showed that bisphenols can relax vascular smooth muscles, but the effective concentrations are too high to produce clear cardiovascular effects in relation to common biological exposure as was confirmed with the most potent bisphenol AF.


Assuntos
Compostos Benzidrílicos , Sistema Cardiovascular , Humanos , Ratos , Animais , Ratos Wistar , Compostos Benzidrílicos/toxicidade , Compostos Benzidrílicos/metabolismo
2.
Nutrients ; 14(3)2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35276844

RESUMO

This review summarizes the current knowledge on essential vitamins B1, B2, B3, and B5. These B-complex vitamins must be taken from diet, with the exception of vitamin B3, that can also be synthetized from amino acid tryptophan. All of these vitamins are water soluble, which determines their main properties, namely: they are partly lost when food is washed or boiled since they migrate to the water; the requirement of membrane transporters for their permeation into the cells; and their safety since any excess is rapidly eliminated via the kidney. The therapeutic use of B-complex vitamins is mostly limited to hypovitaminoses or similar conditions, but, as they are generally very safe, they have also been examined in other pathological conditions. Nicotinic acid, a form of vitamin B3, is the only exception because it is a known hypolipidemic agent in gram doses. The article also sums up: (i) the current methods for detection of the vitamins of the B-complex in biological fluids; (ii) the food and other sources of these vitamins including the effect of common processing and storage methods on their content; and (iii) their physiological function.


Assuntos
Deficiência de Vitaminas , Complexo Vitamínico B , Humanos , Tiamina , Vitamina A , Vitamina K
3.
Nutrients ; 14(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35057508

RESUMO

Regular intake of polyphenol-rich food has been associated with a wide variety of beneficial health effects, including the prevention of cardiovascular diseases. However, the parent flavonoids have mostly low bioavailability and, hence, their metabolites have been hypothesized to be bioactive. One of these metabolites, 3-hydroxyphenylacetic acid (3-HPAA), formed by the gut microbiota, was previously reported to exert vasorelaxant effects ex vivo. The aim of this study was to shed more light on this effect in vivo, and to elucidate the mechanism of action. 3-HPAA gave rise to a dose-dependent decrease in arterial blood pressure when administered i.v. both as a bolus and infusion to spontaneously hypertensive rats. In contrast, no significant changes in heart rate were observed. In ex vivo experiments, where porcine hearts from a slaughterhouse were used to decrease the need for laboratory animals, 3-HPAA relaxed precontracted porcine coronary artery segments via a mechanism partially dependent on endothelium integrity. This relaxation was significantly impaired after endothelial nitric oxide synthase inhibition. In contrast, the blockade of SKCa or IKCa channels, or muscarinic receptors, did not affect 3-HPAA relaxation. Similarly, no effects of 3-HPAA on cyclooxygenase nor L-type calcium channels were observed. Thus, 3-HPAA decreases blood pressure in vivo via vessel relaxation, and this mechanism might be based on the release of nitric oxide by the endothelial layer.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Flavonoides/metabolismo , Flavonoides/farmacologia , Fenilacetatos/farmacologia , Animais , Modelos Animais de Doenças , Ratos , Ratos Endogâmicos SHR
4.
J Cardiovasc Dev Dis ; 8(12)2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34940528

RESUMO

Endoglin is a 180 kDa transmembrane glycoprotein that was demonstrated to be present in two different endoglin forms, namely membrane endoglin (Eng) and soluble endoglin (sEng). Increased sEng levels in the circulation have been detected in atherosclerosis, arterial hypertension, and type II diabetes mellitus. Moreover, sEng was shown to aggravate endothelial dysfunction when combined with a high-fat diet, suggesting it might be a risk factor for the development of endothelial dysfunction in combination with other risk factors. Therefore, this study hypothesized that high sEng levels exposure for 12 months combined with aging (an essential risk factor of atherosclerosis development) would aggravate vascular function in mouse aorta. Male transgenic mice with high levels of human sEng in plasma (Sol-Eng+) and their age-matched male transgenic littermates that do not develop high soluble endoglin (Control) on a chow diet were used. The aging process was initiated to contribute to endothelial dysfunction/atherosclerosis development, and it lasted 12 months. Wire myograph analysis showed impairment contractility in the Sol-Eng+ group when compared to the control group after KCl and PGF2α administration. Endothelium-dependent responsiveness to Ach was not significantly different between these groups. Western blot analysis revealed significantly decreased protein expression of Eng, p-eNOS, and ID1 expression in the Sol-Eng+ group compared to the control group suggesting reduced Eng signaling. In conclusion, we demonstrated for the first time that long-term exposure to high levels of sEng during aging results in alteration of vasoconstriction properties of the aorta, reduced eNOS phosphorylation, decreased Eng expression, and altered Eng signaling. These findings suggest that sEng can be considered a risk factor for the development of vascular dysfunction during aging and a potential therapeutical target for pharmacological intervention.

5.
J Sep Sci ; 44(9): 1893-1903, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33650236

RESUMO

Sensitive analysis of very low-molecular weight metabolites using liquid chromatography with quadrupole-time-of-flight mass spectrometry is challenging due to the high losses of ions in a time-of-flight analyzer. Improvement in sensitivity for these analytes via the optimization of advanced parameters, including quadrupole profile, ion guide parameters, and duty cycle, has been achieved. The optimization of the method was carried out using a large spectrum of structurally different compounds including (iso)flavonoids and their known metabolites. These compounds can be categorized into two major groups, that is, compounds with (iso)flavonoid core and low-molecular weight phenolics. The optimization of the duty cycle enabled up to a 15-fold increase in analyte responses while the contribution of tuning ion optics and quadrupole profile was negligible. The limits of quantifications of our new method were assessed using both standard solutions and rat plasma. They were decreased at least 10 times for several low-molecular weight phenolics enabling measurement of their concentrations in a range of 1-50 ng/mL in rat plasma after protein precipitation. Concurrently, the limits of quantifications for compounds with (iso)flavonoid core did not increase distinctly allowing their detection in a range of 0.5-10 ng/mL. The new method was used for the targeting of phenolics in biological samples from pharmacokinetics experiments.


Assuntos
Fenóis/sangue , Animais , Cromatografia Líquida de Alta Pressão , Masculino , Espectrometria de Massas , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...